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Pfeiffer suggested that HPL results from breakdown 
heme,"6 and Irvine identified a distinctive triad of urobilinoids 

that perform HPL assay: Audhya (Vitamin Diagnostics, Inc, Cliffwood with derivation of HPL from microbial degradation of bile p 
Beach, New Jersey); Jackson (Bio-Center Laboratory, Wichita, ment.78 Irvine was unable to produce HPL from heme, bilirub 
Kansas); and McLaren-Howard (Biolab Medical Unit, London). or bile pigments under mild laboratory conditionsg and foun 
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that a large dose of hemoglobin (1.6 kg of blood sausage over 48 
hours) produced no effect on HPL excretion." 

Irvine hypothesized that HPL is a metabolite of PBG or por- 
phyrins from the heme biosynthetic pathway, citing the structural 
similarity of these compounds to HPL, the porphyrinogenicity of 
HPL, and very high levels of HPL in acute intermittent porphyria 
(AIP).9 The side-chains of PBG correspond exactly to HPL once 
they are decarboxylated and deaminated, and an endogenous 
enzyme is known to convert PBG to the corresponding hydroxy- 
lactam. Irvine included as precursor candidates all porphyrins 
with a methyl, vinyl, or ethyl group found in hemo-configuration 
on ring I."esponse to a large oral dose of aminolevulinic acid 
(ALA) (1.5 g) did double urinary HPL over baseline in one subject 
for several days." Irvine failed to produce HPL from porphyrins 
ynder mild laboratory  condition^.^ 

Of all the porphyrins, isocoproporphyrin is most homolo- 
gous to HPL.912 Isocoproporphyrins are an abnormal series of 
porphyrins from altered human heme bio~ynthesis.'~'~ A poly- 
morphism for CPOX increases isocoproporphyrins, as do toxins 
such as mercury,15 diazinon,16 and hexachl~robenzene.'~ 
Suggestively, urinary coproporphryin concentrations were great- 
er in high-Mauve schizophrenics than other schizophrenics," 
and intraperitoneal injection of rats with 0.65 pmol/kg of HPL 
(Cutler's low dose, as discussed in part 1 of this article) quintu- 
pled urinary coproporphyrins.18 

The formation of isocoproporphyrin from altered human 
heme biosynthesis requires participation of gut flora. Altered 
host CPOX produces dehydroisocoproporphyrinogen, which is 
degraded by gut flora to produce isocoproporphyrin in stool.13 "I6 

If, as Irvine suggested, isocoproporphyrin is a precursor to HPL, 
then either host or microbelg could effect the final conversion 
from isocoproporphyrin. But the preceding step-dehyrodroiso- 
coproporphyrinogen to isocoproporphyrin-is microbial. 

Preliminary evidence does suggest bacterial involvement in 
the formation of Mauve. Oral tetracycline reversibly abolished 
urinary HPL excretion in 4 previously Mauve-positive subjects. 
Oral dosing with kanamycin, a non-absorbable antibiotic, revers- 
ibly abolished or sharply reduced urinary HPL in 9 subjects.120 

MAUVE AND THE GUT 
There has been no quantification of HPL in stool or direct 

measurement of intestinal permeability of high-Mauve subjects, 
but multiple observations suggest that intestinal permeability 
modulates HPL excretion in urine. As these facts are considered, 
it should be kept in mind that Mauve not only is associated with 
neurobehavioral symptoms, but abdominal signs and symptoms 
exist in many high-Mauve subjects. Abdominal tenderness was 
reported in a large percentage of high-Mauve  subject^,^' and 
Pfeiffer associated Mauve with sharp abdominal pains, as "stitch- 
i n - ~ i d e . " ~ ~ . ~ ~  Schizophrenics* and au t i s t i c~~~"~  have more abdomi- 
nal symptoms, and abdominal pain is characteristic of AIP. 

It is known that zinc deficiency results in intestinal epitheli- 
al damage and increased permeability mediated by greater intes- 
tinal NO.30 Since urinary HPL associates with zinc deficiency, 

HPL might be expected to associate with intestinal permeability. 
Suppression of urinary HPL with zinc (admittedly, in combina- 
tion with B6; there is no record of attempts to suppress HPL with 
zinc alone)6 comports with evidence that zinc lessens bowel per- 
meability in animals31 33 and in humans3c37 and reduces bacterial 
adherence to enterocyte~.~~ 

Irvine observed that laxatives and enemas increase urinary 
HPL.' The types of enemas and laxatives were not specified, but 
the range of possibilities would appear to increase intestinal per- 
meability. Magnesium sulfate3' and biscody140 significantly 
increase intestinal pemeability. Soap-suds or tap-water enemas 
result in epithelial loss,41 which would be expected to increase 
intestinal permeability. The effect of laxatives and enemas sug- 
gests that intestinal permeability affects urinary HPL. 

To explain the clinical observation that HPL excretion and 
stress are associated, Sohler specifically proposed that urinary 
excretion of HPL relates to a "stress-induced anomaly of intestinal 
permeability which permits these pyrroles to get into the systemic 
c i r ~ u l a t i o n . " ~ ~ ~ ~ ~  It is well established that stress increases intesti- 
nal permeability. One hour of water-avoidance stress" or 4 hours 
of restraint stress43 significantly increased intestinal permeability 
in rats. Psychosocial stress results in intestinal inflammation and 
greater intestinal permeability in humans.M46 More specifically, 
emotional stress increases urinary excretion of compounds nor- 
mally retained in the bowel, including bilirubin metabolites4748 
and in dole^^^ 51 from bacterial degradation of tryptophan. 

The permeabilized intestinal epithelium of stressed rodents is 
characterized by greater numbers of bacteria adhering to or pene- 
trating bowel epithelium, Mtration by mononuclear cells,5253 mast 
cell activation, and depletion of r n u c ~ u s . ~ ~ ~ ~  Catecholamines and glu- 
cocorticoids--the so-called "stress hormones"-increase many-fold 
during stress. Experimentally, administration of stress hormones 
duplicates the effects of experimental stress on intestine. 

Application of norepinephrine to sheets of large bowel 
increased bacterial adherence within 30 minutess5 Intestinal epi- 
thelial permeability is increased by glucocorticoid injection and 
mediated by glucocorticoid  receptor^.^^ Central or peripheral 
injection of corticotropin releasing factor (CRF) mimics stress- 
induced degranulation of mast cells and increased permeability 
in ~ o l o n . ~ ~ . ~ ~  Dexamethasone injections of rats decreased IgA and 
increased bacterial adherence to epithelium within 24 hours.58 

Irvine's attempts to provoke HPL in animals with a number 
of treatments were futile, with one notable exception: urinary 
HPL increased significantly in Sprague-Dawley rats and female 
hyperprolinemic (PRO/Re) mice treated with p r e d n i s ~ n e . ~ ~ ~ ~  
Other mechanisms-including porphyrinogenic-are possible, 
but the response to prednisone is consistent with a permeability 
effect on HPL excretion. 

Roman Lietha presented data that suggested an association 
between urinary HPL and indicans in 154 patients at a Princeton 
BioCenter conference in 1988. The indicans test is a qualitative 
assay for urinary indoles, which result from enterobial degradation 
of tryptophan. It is known that intestinal permeability associates 
with increased accumulation of tryptophan in intestinal 
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Indicans correlate poorly with dietary protein and small bowel flora 
but do associate with enteric protein loss? which in turn associates 
with intestinal ~ermeability.~~ Urinary indicans, while lacking speci- 
ficity, would be expected to associate with intestinal permeabity. 
Data from a mixed cohort of 2726 subjects from the Biocenter 
Laboratory in Wichita, Kansas, were examined to determine if a 
relationship exists between indicans and HPL in urine. Indicans 
positively correlated with HPL by colorimetric assay (Pc .0001) 
(Figure 1). Mauve appears to relate to gut (Figure 2). 

HPL and Indicans 
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FIGURE 1 Median Values for Colorimetric HPL Equivalents* Correlated 
With Indicans in Singe-void Urine From Mixed Cohort of 2726 Subjects 

*Normal <20 pg/dL. 
HPL values for the 4+ indicans group were skewed, necessitating use of median 
values for siphcance testing. 
P<.0001 for difference in medians of all groups. 

Emotional Stress 

1' Gut Permeability 

Cp450 
I' HPL 

.1 Regulatory Heme 
FIGURE 2 Proposed Relationships Among HPL, Emotional Stress, 

Oxidative Stress, Zinc, Heme, and Intestinal Permeability 

MISLEADING LITERATURE AND OTHER OBSTACLES 
After a period of initial activity, no basic research on Mauve 

has graced the peer-reviewed literature for many years. This inac- 
tivity contrasts rather sharply with ongoing enthusiasm for 
Mauve among a subgroup of nutritional practitioners and fami- 
lies. The disparity probably stems in part from continuing mis- 
identification of the compound as KP. Also, HPL is a highly 
labile, technically challenging compound to study. What's more, 
only recently did the prevailing psychoanalytic paradigm open to 
underlying physical causation of "psychiatric" disease and the 
facilitative concept of oxidative stress. Finally, unwarranted nega- 
tive conclusions about Mauve in the peer-reviewed literature dis- 
courage potential investigators. 

An article in the American Journal flsychiatry disparagingly 
entitled "Pyroluria: a Poor Marker in Chronic S~hizophrenia"~~ 
found no relationship between qualitative urinary Mauve and a 
presumptive list of signs and symptoms for zinc and vitamin B6 
deficiency. Remarkably, the cohort had only 2 subjects with posi- 
tive urine. 

An article in Clinical Science stated unequivocally in title and 
abstract that Mauve, "is not causally related to s~hipohrenia.""(p~~~) 
The text of the article softened the conclusion by stating that 
Mauve was "unlikely" to be causal, because no difference was 
found between schizophrenics and controls. The technical han- 
dling of specimens is suspect because Mauve was undetected in 
half of samples, at a purported detection limit of 0.25 pgfdL. The 
use of subjects with active somatic illness as controls was unfortu- 
nate, because Mauve is elevated in somatic i l l r ~ e s s . ~ ~ ~ ~ ~ ~ ~  

As discussed in part 1 of this article, Cutler minimized 
potential neurotoxicity of HPL in humans in Pharmacology and 
Toxicology on the basis of hypothetical estimates of HPL in 
human blood contradicted by prior published values.71 In addi- 
tion, the article indicated that thesis work by Graham failed to 
demonstrate a positive correlation between HPL levels and 
symptom severity in schizophrenia. It fact, only 1 of 7 schizo- 
phrenics in the thesis data had above-normal urinary HPL." 

Kershner reported in Journal @Nutritionn the results of a ran- 
domized trial that sought to evaluate HPL as a screening test for 
response to nutrients. Twenty children with learning disability/ 
hyperactivity received a low carbohydrate diet for 6 months, and 
18 of 20 improved. Then the cohort was divided into groups of 10. 
One group received daily vitamin C, nicacinamide, vitamin B,, and 
vitamin B6(500-750 mg); the other group received placebo. After 6 
months, neither group showed additional improvement. Kershner 
concluded that "Kryptopyrrole [colorimetric HPL] proved invalid 
as a screening test for vitamin-dependent learning  disorder^"^^(@^^) 

because pre-treatment levels did not demonstrate statistical rela- 
tionship with improvement on vitamins. 

The mean HPL values for the 2 groups were well within nor- 
mal limits, and only 6 subjects (presumably 3 in either cohort, 
but not specified) had elevated HPL prior to nutrients. To com- 
pensate for the inadequate number of subjects with abnormal 
HPL, Kershner arbitrarily adjusted the normal range for HPL 
prior to statistical analysis. The choice of nutrients for the 
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Kershner study would be considered suboptimal by current stan- 
dards and at the time of the study. Hoffer embraced vitamin B6 
and zinc as superior to multi-gram doses of B3 years earlier, yet 
Kershner used no zinc. Pfeiffer4,." and McCabe" reported that 
without zinc, as much as 3 g of B6 were required to suppress 
HPL, but Kershner used far less. 

From the Kerschner study is extracted a useful clinical point. 
Behavioral deterioration in some subjects after vitamins was 
relieved by the addition of magnesium. The late Bernard 
Rimland, P ~ D ,  founder and former Director of Autism Research 
Institute, San Diego, California, affirmed in oral communications 
from 1997 to 2006 that optimal response to higher doses of B6 
often is achieved with concurrent magnesium. 

CONTEMPORARY THERAPEUTIC APPROACHES 
Vitamin B6 (200-800 mg daily) in combination with zinc 

(25-100 mg daily) usually is sufficient to suppress HPL and 
achieve optimal symptomatic response. Generally, higher uri- 
nary HPL suggests the need for proportionately higher dosing of 
zinc and B6, and repeated measurements of HPL influence dos- 
ing decisions. 

Clinical symptoms and HPL suppression are the primary 
determinants of B6 dosing. Poor dream recall or morning nau- 
sea/anorexia reportedly are useful signs of insufficient B6.=Blood 
tests for EGOTT4 or P5PU may be used to confirm functional sta- 
tus of B6, but pyridoxine blood levels are not considered useful. 
Long-term treatment of 3000 high-Mauve patients with high- 
dose vitamin B6 resulted in no cases of peripheral ne~ropathy,'~ 
but reversible median nerve paresthesis has been reported.23 P5P 
is unassociated with n e u r ~ p a t h y . ~ ~ , ~ ~  As orally communicated by 
William Walsh, P ~ D ,  in 2005, P5P may be effective in combina- 
tion with B6 or instead of B6 in some high-Mauve subjects, 
including "slender malabsorbers." 

Zinc requirement may be quite high in subjects with elevat- 
ed HPL. Subnormal and low-normal levels of cellular or plasma 
zinc indicate the need for,more zinc. For assessment with plasma 
zinc, avoidance of zinc supplementation for 24 hours excludes 
artifact. Long-term zinc requirements may be less than optimal 
doses in initial months of treatment, during accelerated growth, 
or during extended periods of psychosocial stress. Recurrence of 
leukonychia or striae is a relatively sure sign of lagging zinc. 

Excessive zinc supplementation, which results in copper 
depression and depressed immunity, can be avoided with periodic 
blood testing. Especially in adults receiving more than 50 mg of 
elemental zinc daily, cellular or plasma zinc should not exceed 
upper limits of normal, and cellular or serum copper should not 
be below the normal range. Supplemental copper is rarely indi- 
cated in high-Mauve subjects and can aggravate symptoms. 

Suppression of manganese may result from aggressive zinc 
supplementation. Small dosages (approximately 5 mg manga- 
nese for each 30 mg of supplemental zinc) reportedly improve 
symptoms in some high-Mauve subjects. Serum or red-cell levels 
may be monitored during supplementation with manganese, 
which in excess is pro-oxidant. 

FUTURE RESEARCH 
As a high priority, randomized clinical trials are needed to 

examine symptom improvement in high-Mauve subjects after 
treatment with B6 and zinc. There are many corollary questions 
to answer: Does P5P, which protects intestinal GSHPX,~~ warrant 
an expanded role, and if so, in which patients? Would zinc, 
which blocks intestinal lipoxidation and permeability,'%e useful 
in high boluses or perhaps in poorly absorbable forms? If the 
relationship to oxidative stress is fundamental, would antioxi- 
dants such as GSH or coenzyme Qlo be useful treatments? 

Suggested novel applications of Mauve in behavioral disor- 
ders include prevention of suicide," prevention of psychiatric ill- 
n e s ~ , ~ ]  and treatment and prevention of criminal behavior.7879 
Hoffer found that sudden, unexpected deviant behavior in previ- 
ously well-adapted adults associated with Mauve.80 

The status and use of fatty acids in high-Mauve subjects 
needs elucidation. Owing to the vulnerability of double bonds to 
oxidative stress, both omega3 and omega-6 fatty acid depletion 
might be expected in high-Mauve subjects. Preliminary data on 
23 schizophrenics suggests this is the case, at least in schizophre- 
nia. Plasma from the schizophrenics contained significantly less 
docosahexanoic acid (DHA, omega-3), as a percentage of total 
lipids, than controls. Only the 6 high-Mauve subjects from this 
cohort also had lower arachidonic acid (AA, omega-6) (P<.01).8I 

A number of studies have found lower concentrations of 
omega3 and omega-6 fatty acids in blood from schizophren- 
i c ~ , ~ ~ ~ ~  including lower red-cell membrane DHA and AA.83 
Multiple trials report improvement in groups of schizophrenics 
receiving omega3 s~pplementation.~~ It is possible that Mauve 
identifies a subgroup which would benefit from omega-6 supple- 
mentation in combination with omega3 or as a higher priority. 

Evening primrose oil (EPO), a rich source of gamma linolen- 
ic acid (GLA), is a precursor for both AA and dihomo-gamma- 
linolenic acid (DGLA), immediate precursor for prostaglandin 
El (PGE-1). PGE-1 rapidly lowers intestinal permeability, includ- 
ing stress-induced intestinal ~ermeability.8~~~ EPO also improves 
zinc absorption.9092 EPO and misoprostol, a commercial PGE-1 
analogue, are logical possibilities for Mauve research. 

HPL is a potentially useful screen for other biochemical 
abnormalities, including dysregulation of homocysteine, a neu- 
rotoxicg3 metabolite. Cystathionine beta-synthase, which metabo- 
lizes homocysteine, is uniquely dependent on both vitamin B6 
and heme as c o f a c t o r ~ . ~ ~ ~ ~  In written communication, Allen 
Lewis, MD, Medical Director of Pfeiffer Treatment Center, 
Warrenville, Illinois, reported in 2005 that serum HCY and colo- 
rimetric HPL (single-void, unadjusted) from unsupplemented 
autistic children seen at the PfeifTer Treatment Center correlated 
significantly (N=ll4; P=.002). Plasma HCY associates with great- 
er risk of cardiovascular and neurodegenerativeg6 disease. 

Mauve assay may be useful in the care of subjects with strictly 
somatic diagnoses or in the optimization of health in subjects with- 
out diagnoses. Mauve elevation in somatic illness2'6&6870 presum- 
ably reflects unrecognized nutritional deficits and greater oxidative 
stress. In allergy, which is associated with zinc defi~iency,~~ Mauve 
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testing might enhance nutritional awareness. (PfeiEer suggested 
allergic diathesis in association with mauve, citing the zinc require- 
ment for histamine storage in mast cells.u) Similarly, cancer associ- 
ates with zinc deficiency98 and B6 deficien~y.~~.~~~ 

Corroboration of HPL as marker for biotin deficiency should 
be a high priority. The finding is plausible. Biotinidase, necessary 
for maintenance of biotin levels, is sensitive to oxidative modifi- 
cation, and oxidative stress is suspected to lower biotinidase in 

Biotin deficiency causes brain dysfunction, and sub- 
jects with partial biotinidase deficiency remain asymptomatic 
until stressed.lo3 

HPL testing is potentially useful in pregnancy, when nutri- 
tional demands are enormous and when nutritional deficits can 
result in fetal disease or malformation. Biotin deficiency, for 
example, is relatively common in pregnancy," and marginal bio- 
tin deficiency is teratogenic in mice.lM Deficiencies of 
zinc,lo7 and B p  independently result in cleft palate in animals. 
Presumably, combined deficiency of these nutrients increases 
teratogenic risk. Hyperhomocysteinuria associates with fetal dis- 
ease and malformation," and heme modulates neur~genesis."~ 
Pfeiffer associated Mauve with mi~carriage.~~ 

Predisposition to Mauve may be heritable. Some clinicians 
consider elevated Mauve in one family member an indication for 
family-wide testing. Polymorphisms favoring HPL production are 
considered most likely in genes for altered expression of CPOX, por- 
phyrins, metabolism of stress  hormone^,"^."^ or production of 
endogenous antioxidants such as metall~thionein.~~ Defective 
enzymes may associate with HPL, especially those that are sensitive 
to oxidative impairment" and also are either B6-dependent (eg, glu- 
tamic acid decarboxylase) or zinc-dependent (eg, pyridoxal kinase). 

Porphyrin profiles in high-Mauve subjects might confirm 
origin in the heme biosynthetic pathway, any defect of which can 
be magnified by factors that increase activity of ALA synthase 
(ALA-S). Treatment of animals with HPL significantly increased 
ALA-S activity,l2.'" presenting the intriguing possibility that an 
aberrant product of porphyrin metabolism may exert positive 
feedback on its own production. A number of toxins-especially 
heavy metals and alcohol-increase ALA-S activity." 

Research is needed to confirm the relationship between HPL 
excretion and stress, and to more completely characterize HPL as 
a biomarker for oxidative stress. H202 should be measured in 
high-Mauve subjects. Besides catalase, depression of other heme- 
dependent enzymes could potentiate greater oxidative stress in 
high-Mauve subjects. For instance, lower cytochrome p450 
might confer greater sensitivity to medications or toxins. 

Association of HPL excretion with stress hormones and oxida- 
tively modified biomolecules such as 8-OHdG and isoprostane 
seems likely. The perspective for research in this area is provided by 
the understanding that emotional stress causes increased oxidation 
of biomolecules, including brain, as surely as do toxins or deficiency 
of antioxidant nutrients (as reviewed by McGinnis in 2007).m 

The biological effects of HPL are mostly unexplored, and 
interpretation of such studies will be abetted by accurate quanti- 
fication of HPL in blood and stool. Specific microbes may associ- 
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ate with HPL. Downstream effects of heme suppression by HPL 
may be detectable in animals and high-Mauve subjects. HPL may 
exert significant effects on gut or brain, including hallucinosis. 
Associated EEG abnormalityUg may normalize with Mauve sup- 
pression, but modern brain scans have eluded Mauve. 

CONCLUSION 
At the very least, this review should clarify the identity and 

history of Mauve (HPL). Hopefully, it will strengthen commit- 
ment to careful handling and refined laboratory approaches to 
urinary assay of HPL, including normalization to specific gravity 
or creatinine. And for the first time, herein were presented orga- 
nized data that examined-and confirmed-urinary HPL as a 
yardstick for functional B6 and zinc deficiency. The findings are 
congruous with clinical observations over the decades and should 
stimulate independent corroboration and further research. 

In its search for clinically relevant biomarkers for oxidative 
stress, modern medicine wbuld do well to consider urinary 
Mauve as a means to quantify oxidative stress and to guide the 
use of specific antioxidant therapies. Besides practical potential, 
Mauve provides an exquisite conceptual model for the interplay 
of oxidative stress, emotional stress, nutrients, and gut as they 
pertain to disease of brain and body. 
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