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Editor's note: The following is part 1 o f a  2-part article. Part 2 will 
appear in the May/Jun 2008 issue of Alternative Therapies in 
Health and Medicine. 

"Mauve Factor," or "Mauve" (m6v) for brevity, first was 
detected in the urine of psychiatric patients by the Hoffer group in 
195814 and named for its appearance on paper chromatograms. 
Irvine extracted the compound from urine,15 correctly assigned the 
structure to the pyrrole family,I6 and conferred the common 
name.' Early technology permitted only qualitative assay.268 

Hoffer observed that recovery from acute schizophrenia asso- 
ciated with disappearance of Mauve from the urine, regression 
with reappearance.247 Large doses of vitamin Bj suppressed Mauve 
in sch~zophrenics.~~~ PfeifTer reported superior clinical results with 
combined vitamin B6 and zinc, which suppressed Mauve and 
improved symptoms in many neurobehavioral disorders.lQL7 

The Pfeiffer group introduced a colorimetric quantitative 
assay for Mauve,I8 which utilizes kryptopyrrole (KP) as standard. 
Structural similarity affords the use of KP as standard for HPL 
assay, but the 2 molecules are distinct (Figure 1). Mauve was iden- 
tified mistakenly as KP by Irvine in a high-profile scientific journal 
in 196919 and again by Sohler in 1970.20 A flurry of research on the 
experimental effects of KP eventuated.3102173 Improved technology 
demonstrated that KP is not found in human and Mauve 
was identified indisputably by synthesis as HPL.3"41 

"HPL" and "Mauve" are used synonymously in this article and 
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Mauve (HPL) Kryptopyrrole 

I FIGURE 1 Mauve Factor (HPL) Is Distinct From Kryptopyrrole (W) 1 
Structural similarity of the compounds affords the use of KP as standard in 
the colorimetric assay for HPL. 

for clarity may be substituted for erroneous use of "kryptopyrrole" 
in older documents. "High-Mauve" denotes subjects or groups 
with elevated HPL or with a tendency to excrete excess HPL. 
"Pyrroluria" lacks specificity, as many pyrroles appear in urine. 

HPL is unstable outside the body, readily interconverting 
with other  structure^.'^^^^^^ 25 Exposure to light or to seemingly 
mild chemical treatments reduces detectable HPL,8'939 which also 
is acid labile" (a study that unadvisedly used hydrochloric acid to 
preserve urine failed to detect HPL in s~hizophren ia ,~~  a condi- 
tion weU known for HPL elevation). Graham reported the half- 
life of HPL in urine at room temperature to be 10 to 12 hours, 
although the extent of light exposure was un~pecif ied.~~ 

Addition of ascorbate preservative and protection from 
light and heat maximize detection of HPL. Besides light-shield- 
ing transport tubes, one laboratory (Vitamin Diagnostics, 
Cliffwood Beach, New Jersey) recommends urine collection 
under dim light and employs darkroom assay conditions. If 
assay for HPL cannot be performed immediately, overnight 
shipment and/or freezing of the urine sample are required by all 
North American laboratories surveyed for this review. Gorchein 
found that freezing to -8" C stabilized HPL in urine for up to 4 
months4' Re-freezing of thawed specimens diminishes detect- 
able HPL (Ellen Hanson, Laboratory Superviser, Direct Health 
Care Access I1 Laboratory, Inc, Mount Prospect, Illinois; oral 
communication, September 2006). 

KP is readily oxidized,39" so laboratories take special pre- 
cautions to maintain purity of KP used for colorimetric HPL 
assay. Occasionally, the colorimetric assay is invalidated by the 
presence of other Ehrlich-reactive compounds which produce 
spectrophotometric interference at 540 nm. Urobilinogen is the 
most common offender.1849 Others reportedly include hemoglo- 
bin, bilirubin, and  mendelamine (oral communication, 
September 2006, from Irwin Sommerfeld, Laboratory Director 
ofDirect Health Care Access I1 Laboratory). 

VALIDATION OF THE COLORIMETRIC ASSAY FOR 
URINARY HPL 

HPL assay utilizing high-pressure liquid chromatography/ 
mass spectroscopy (HPLC/MS) and synthetic HPL standard is 

highly sensitive and specific. In a comparison of split-urine samples 
by Vitamin Diagnostics Laboratory, the simpler colorimetric assay 
for HPL correlated very highly with HPLC/MS (r=0.98; P<.0001) 
(Figure 2). It should be noted that absolute HPL values varied on  
the 2 assays. The normal range for colorimetric assay was <15 yg/ 
dL, but for MS/HPLC, normal was <25 pg/dL. The latter compares 
favorably with Graham's normal range of <26 pg/dL utilizing gas- 
Liquid chromatography and synthetic HPL standard.39 

HPL by HPLC/MC (pg/dL) 

FIGURE 2 HPL by HPLC/MS and Colorimetric Assay 

Vahdation of colorimetric assay for urinary HPL. Same as Figure 1 cohort, 
but excludes extremely high (>I00 pg/dL on colorimetric) values. N=44; 
~ 0 . 9 8 ;  P<.OOOl. 

EFFECTS OF VARIABLE HYDRATION ON HPL 
CONCENTRATION 

Normalization of values to urinary specific gravity (SG)50 or 
creatinine corrects for variable hydration. Pfeiffer encouraged 
normalization of the colorimetric assay to SG in his later years, 
according to Tapan Audhya, P ~ D  (oral communication, June 
2006). Examination of results from 600 colorimetric assays from 
the BioCenter Laboratory in Wichita, Kansas, revealed that 20% 
of HPL values moved into or out of the normal range after adjust- 
ment to SG by refractometry. Examination of data from the 
Biocenter Laboratory and from the Direct Health Care Access I1 
Laboratory revealed that normalization affects reported HPL val- 
ues up to 4-fold. 

Normalization was found to improve correlation with other 
laboratory parameters. Before normalization to SG, HPL in 
single-void specimens from subjects with mixed diagnoses failed 
to correlate significantly with plasma zinc (N=87; r=-0.15; 
P=.18). In written communication from July 2006, William 
Walsh, P ~ D ,  reported that significant correlations were achieved 
after normalization of colorimetric HPL to SG (r=-0.28, P=.009) 
and to creatinine (r=-0.30, P=.004). Graham's peer-reviewed 
publications adjusted HPL to ~ r e a t i n i n e . ~ ~ ~ ~  

Addition of ascorbate to urine couections protects HPL from 
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degradation. However, typical quantities of ascorbate employed 
(250-500 mg) alter SG of urine in the usual 10 mL transport tube. 
Laboratories have found ways to overcome this difficulty. Vitamin 
Diagnostics Laboratory divides the urine at time of collection, 
yielding a second, unpreserved specimen for determination of SG. 
Vitamin Diagnostics Laboratory director Tapan Audhya, P ~ D ,  

reports that for 24-hour urine collection, conservation of HPL 
with negligible effects on SG are achieved by addition of 500 mg 
of ascorbate to the large, refrigerated container, from which a 
small aliquot is examined for HPL and SG. 

MAWE IN BIOLOGICAL FLUIDS 
All humans apparently excrete small quantities of HPL in 

urine. As assayed by HPLC/MS under strict darkroom conditions, 
Vitamin Diagnostics Laboratory finds that the normal concentra- 
tion of HPL in urine is 2 to 25 pg/dL. In our survey of labs in 
North America, Europe, and Australia, the upper limit of normal 
for HPL by colorimetric assay varies between 8 and 20 pg/dL. 

As an approximate yardstick, clinicians consider urinary HPL 
levels over twice the upper limit of normal as highly elevated. Very 
high HPL measurements-hundreds of micrograms per decili- 
ter-are reported and not strictly limited by primary diagnosis. 
HPL is detectable in human blood3,3945.53 54 and cerebrospinal 

In schizophrenics with elevated urinary HPL, Durko report- 
ed that whole blood levels for HPL (2-dimensional thin-layer 
chromatography, synthetic HPL standard) ranged between 4 and 
10 ~.lg/dL. Dialysis cleared HPL from both blood and urine.54 
Interfering substances have frustrated efforts to develop a practi- 
cal blood test for HPL. 

Mauve Excretion Patterns 
In most cases, day-to-day deviations around a baseline mean 

do not preclude identification of subjects prone to HPL elevation. 
Sporadic spikes in HPL well above baseline associate with stress, 
as will be discussed later. There is evidence that HPL excretion 
can increase very rapidly. In 1992, a study for the US Navy mea- 
sured urinary HPL (colorimetric, normalized to SG) after male 
volunteers were subjected to brief cold-water immersion stress. 
In an oral summary of the study, Tapan Audhya, PhD, reported 
in 2002 the observation of significant increases in HPL excretion 
at  30 minutes, with peaks (as high as 80 pg/dL) at 1 hour and 
reversion to baseline at 24 hours. 

HPL excretion appears to be greater during waking hours 
than during sleep. According to William Walsh, PhD, Pfeiffer 
suggested second-void spot urine specimens for HPL because he 
considered first-void measurement misleading (oral communica- 
tion, July 2006). At Vitamin Diagnostics Laboratory, HPL in 
urine collected from subjects over 24 hours was higher from 
noon until midnight than from midnight until noon. It is noted 
that specific biomarkers for oxidative stress-8 hydroxydeoxy- 
guanosine (8-OHdG), malondialdehyde (MDA), and &isopros- 
tane-peak in early evening.55 

While 24-hour urine collection circumvents intra-day varia- 
tions in HPL excretion, as a practical matter, most laboratories 

accept single-void urines, randomly timed. Hoffer favored sarne- 
time collection of specimens to improve comparability (written 
communication, August 2006). 

HPL IN NEUROBEHAVIORAL DISORDERS 
The discovery of HPL grew out of Hoffer's interest in the 

possible biochemical etiology of schizophrenia. In 1961 he 
reported for the first time that certain urinary "unknown sub- 
stances" on chromatograms were detectable in most schizo- 
phrenics hospitalized for active symptoms or relapses but not 
detectable after symptoms improved or abated (P<.001).785657 It 
is now understood that these substances were HPL and its inter- 
converting isomers. Hoffer applied the qualitative urinary test as 
a n  indicator for treatment with vitamin BS, which reduced 
schizophrenic symptoms and excretion of HPL.4 

In an article that accompanied Hoffer's initial report, Irvine 
first used the term Mauve factor.' The compound associated sig- 
nificantly with psychometric scores for abnormal perception, 
paranoia, depression, and other symptoms in  schizophrenic^.^"^^ 
Electroencephalographic (EEG) abnormality associated with the 
compound in psychiatric patienk5 

It became clear that Mauve is not confined to schizophre- 
nia. In 1965, O'Reilly reported Mauve elevations in affective psy- 
chosis, alcoholism, psychoneurosis, and "disturbed ~hildren."~" 
According to Joan Mathews Larson, executive director of the 
Health Recovery Center, Minneapolis, Minnesota, Mauve is ele- 
vated in approximately 75% of subjects seeking treatment for 
substance abuse (oral communication, July 2002). Mauve eleva- 
tion is documented in many cognitive, affective, and neurobe- 
havioral disorders (Table l).4.822 23 3032 52 5869 

HPL AND STRESS 
O'ReiUy hypothesized that Mauve excretion increases during 

TABLE 1 Neurobehavioral Disorders Associated With Elevated HPL* 

Diagnosis Percentage High-Mauve 

AIp22.32 100 
Latent AIPS2 70 
Down syndrome6' 71 
Schizophrenia, acutes~s8~6'~62 59-80 
Schizophrenia, chronic23,30,s3,M 40-50 
Criminal behavior 

Adults, sudden deviance6' 71 
Youths, violent offenders6" 33 

Manic depress i~n~~~ '~  47-50 
Depression, non - sch i z~ph ren i c~ ,~~ ,~~  12-46 
Auti~rn~~.~' 46-48 
Epilepsys7 44 
Learning di~ability/ADHD~',~~ 40-47 
Neurosess9 20 
~ 1 ~ ~ h ~ l i ~ ~ 4 . 8 . 5 9 . 6 3 . 6 4 . 5 9  20-84 

- 

*AIP indicates acute intermittent porphyria: ADHD, attention deficit hyper- 
activity disorder. 

I 
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I physical or psychosocial ("emotional") stress." Over decades, cli- 
nicians formed the strong opinion that, irrespective of behavioral 
diagnosis, stress increases associated symptoms and excretion of 

Pfeiffer came to state unequivocally that Mauve is 
"a stress-induced fa~tor."~~(p"~' Sohler reportedly induced HPL 
with experimental stress.45 The effect of cold-water stress in the 
unpublished US Navy study was described earlier. 

McCabe advocated short-term increases in B6 dosing to 
blunt symptomatic deterioration in high-Mauve subjects during 
physical or emotional stress.49 Clinicians give higher short-term 
"stress doses" of both B6 and zinc.16" 

VITAMIN B, AND ZINC 
Pfeiffer discovered the clinical response of high-Mauve sub- 

jects to B6 and zinc in 1971 and saw remarkable improvements in 
a series of 1000 high-Mauve patients.1671 

Treatment with B6 and zinc reportedly reduced mean uri- 
nary HPL in 99 patients from 60 pg/dL to 30 pg/dL in 1 
month.30 Although randomized trials have not been performed, 
combined B6 and zinc are now entrenched as core treatment for 
high-Mauve subjects. According to William Walsh, P ~ D ,  neu- 
robehavioral symptoms associated with elevated HPL may 
improve after only a few days of therapy with B6 and zinc (oral 
communication, 2006). Discontinuation may result in severe 
deterioration within 48 hours." 

Clinicians report proportionality between Mauve excretion 
and symptom severityjO and according to the late Hugh Riordan, 
MD, former director of the Center for the Improvement of 
Human Functioning International, Wichita, Kansas (oral com- 
munication, 2000), higher Mauve excretion usually requires 
higher dosages of B6 and zinc for suppression. HPL in urine 
decreased progressively with higher B6 dosing,16 and progressive 
B6 dosing associates with normalization of erythrocyte glutamate 
oxaloacetate transaminase (EGOT).72 

Initially, Pfeiffer tended to use high doses of vitamin B6 
(400-3000 mg daily) and relatively modest ("dietary") doses of 
zinc. Later, some patients were noted to respond optimally to B6 
and as much as 160 mg daily of elemental zincu In the collective 
experience of the authors, long-term treatment with B6 and zinc 
usually is needed for ongoing HPL suppression and symptom 
management. Optimal initial dosages may be higher than main- 
tenance dosages. Zinc requirements in high-Mauve subjects are 
noted to increase during growth spurts then decline abruptly. 
Pfeiffer reported that on occasion, previously high-Mauve sub- 
jects no longer may require high doses of B6 and zincI6; the phe- 
nomenon was confirmed in oral communication in 2003 with 
Mark Vonnegut, MD, a former high-Mauve Pfeiffer patient and 
now a practicing pediatrician in Quincy, Massachusetts. 

Pfeiffer's claims of a "double deficiency" of B6 and zinc in 
association with abnormal Mauve excretionlo were based on the 
clinical response to supplementation and a pattern of lower blood 
levels of zinc and functional B6 status (pyridoxal-5-phosphate 
[P5P] and EGOT) among his high-Mauve patients.117374 
Numerical data were not published. 

Pfeiffer and Sohler proposed that functional B6 deficiency and 
zinc deficiency in high-Mauve subjects results from increased uri- 
nary loss of P5P and zinc due to complexation with Mauve, and  
they cited 20 pg/dL higher zinc content in spot urines of Mauve- 
postive subjects." The finding would extrapolate to relatively 
insubstantial total zinc loss, unless the effect extended to other 
routes of excretion. Pfefler published evidence of binding between 
P5P and KP" and between zinc and KPl8 but did not study HPL. 

Validation of HPL as a Marker for B, Status 
The original data presented in this review were retrieved 

retroactively and anonymously from laboratory records, without 
regard to primary diagnosis or other criteria. In samples collect- 
ed at the Biolab Medical Unit, London, colorimetric urinary HPL 
(single-void, unadjusted to SG or creatinine), correlated moder- 
ately with EGOT (n=58; r=-0.42; P=.001). In samples collected at  
the Vitamin Diagnostic Laboratory, HPL by HPLC/MS in 
24-hour urines, normalized to SG, correlated strongly with 
EGOT (n=32; r=-0.77; P<.0001); all 24 subjects with abnormal 
HPL had below-normal or borderline-low EGOT (Figure 3). 

0 50 100 150 
HPL (pg/dL) I 

FIGURE 3 HPL and B6 Activity* 

HPL by high-pressure Liquid chromatography/mass spectroscopy in 24-hour 
urine correlates strongly with EGOT in mixed cohort. EGOT indicates 
erythrocyte glutamate oxaloacetate transaminase. Normal ranges: urinary 
HPL <25 pg/dL; EGOT activity ratio >0.8. N=32; r=-0.77; P<.0001. 

The data affirm HPL as biomarker for functional B6 defi- 
ciency and rationalize treatment with B6. Clinical response of 
high-Mauve subjects to B6 may relate to known mechanisms by 
which B, subserves neuronal function. Numerous signs, symp- 
toms, and traits have been observed in association with Mauve 
(Table 2). Poor dream recall and mild morning nausea/break- 
fast anorexia may relate especially to B6 deficiency.13 1673 75 Pfeiffer 
suggested that stretch marks result from a combined deficiency 
of B6 and zinc.13 
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TABLE 2 Signs, Symptoms, and Traits Clinicians Report as More 
Prevalent in High-Mauve Patients*4.10 U.l3.L6.~.49.64.71.73 

Poor dream recall Impotence 
Nail spots Eosinophilia 
Stretch marks (striae) B6-responsive anemia 
Pale skidpoor tanning Attention deficit/hyperactivity 
Coarse eyebrows Crime and delinquency 
Knee and joint pain Substance abuse 
Acne Alcoholism 
Allergy Stress intolerance 
Cold hands or feet Emotional lability 
Abdominal tenderness Explosive anger 
Stitch in side Anxiety 
Constipation Pessimism 
Morning nausea Dyslexia 
Light/sound/odor intolerance Familial or social withdrawal 
Tremor/shaking/spasms Depression 
Hypoglycernia/glucose intolerance Paranoia 
Obesity Hallucinations 
Migraine Disordered perception 
Delayed puberty Bipolar disorder 
Amenorrhea/irregular periods Autism 

*The frequency of these features and their relationship to biochemical abnor- 
malities associated with HPL are not well-studied. 

Validation of HPL as a Marker for Zinc Status 
White flecks in the nails (Figure 4) are responsive to ~ i n c ' " ~ ' , ~ ~  

and reportedly detectable in 60% of high-Mauve s~bjec t s .~~HPL 
was examined in relationship to 3 different measurements for 
zinc. As discussed earlier, Walsh reported that plasma zinc and 
single-void colorimetric HPL correlated significantly once normal- 
ized to SG (r=0.28; P=.009) or to creatinine (r=0.30; P=.004). 

FIGURE 4 Leukodynia Implies Zinc Deficit 

curred after dosage was lowered to 40 mg, and 

Cellular zinc levels correlated more strongly with urinary 
HPL. In samples at the BioLab Medical Unit, single-void colori- 
metric HPL (unadjusted to SG) from a mixed cohort correlated 
substantially with white-cell zinc (N=58; r=-0.60; P<.0001). 
Abnormal HPL corresponded to below-normal white-cell zinc in 
42 of 58 patients (Figure 5). In samples at Vitamin Diagnostic 
Laboratory, stronger association existed between red-cell zinc 
and 24-hour urinary HPL (HPLC/MS, adjusted to SG) in a mixed 
cohort (N=37; r=-0.88; P<.0001). Twenty-four of 24 subjects 
with elevated HPL had below-normal red-cell zinc (Figure 6). 
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FIGURE 5 Single-void HPL and White-cell Zinc 
Colorimetric HPL equivalents in single-void urines, unadjusted to specific 
gravity, correlates with white-cell zinc in mixed cohort. Normal values: HPL 
<8 pg/dL; white-cell zinc > 5.4 ng/106 leukocytes. N=58; r--0.60; P<.0001. 

HPL AND OTHER NUTRITIONAL PARAMETERS 
Oscar Kruesi, MD, former academic dean for Integrative 

Medicine, Capitol University, Washington, District of Columbia, 
reported a pattern of low plasma biotin levels in high-Mauve 
patients (oral communication, 2005). At the Vitamin Diagnostics 
Laboratory, 24-hour urinary HPL (HPLC/MS, adjusted to SG) and 
plasma biotin concentrations from a small, mixed cohort strongly 
correlated (N=24; r=-0.88, P<.0001). Elevated HPL predicted 
below-normal plasma biotin in 16 of 16 subjects (Figure 7). These 
data are the first to suggest biotin deficiency in association with 
HPL. Biotin deficiency causes neurological disease in animals and 
humans7778 and is more common than thought." 

Examination oflaboratory records found no association between 
HPL and markers for vitamin Bg (urinary n-methyl nicotinamide), 
vitamin B12 (urinary methylmalonic acid), folate (urinary formimino- 
glutarnic acid, FIGLU), or thiamine (red-cell transketolase). 

POSSIBLE NEUROTOXICITY OF HPL 
Several findings suggest that HPL is neurotoxic in humans: 

(1) structural homology to known neurotoxin; (2) acute behav- 
ioral effects in animals; (3) porphyrinogenicity in animals; (4) 
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association in humans with porphobilinogen (PBG) and amin- 
olevulinic acid (ALA), potential neurotoxins; (5) acute depres- 
sion of non-erythroid heme in animals. 

As a class, pyrroles have been called "nerve poi .son~."~WL is 
from the subclass of monopyrroles, well known for biotoxicity. 3,45 

Batrachotoxin (poison-dart frog)81 and PBGa2 are monopyrroles 
which exert potent effects on the nervous system. KP3~"~22~Z4~z5~29~31-33~45583 

and the hydroxylactam of kryptopyrrole (KPL),84.85 highly homolo- 

gous to HPL, cause acute neurobehavioral effects in animals. 
Structural similarity of HPL to pyroglutamate and kainic acid4'sug- 
gests possible direct effects on neurotransmission. 

Irvine produced ptosis, locomotor abnormalities, and hypo- 
thermia in rats with unspecified doses of HPL." Cutler found that 
intraperitoneal injection of HPL 0.65 pmol/kg produced relative- 
ly mild acute effects: decreased gross activity, increased prefer- 
ence for light areas of the cage, and a trend toward more  
aggressive behavior. A higher dose of 1.95 pmol/kg increased 
head-twitch and backward l o c ~ m o t i o n , ~ ~  behaviors seen in rats 
treated with  hallucinogen^.^^ 

Strictly by estimation, Cutler discounted significant behav- 
ioral effects in humans from HPL, because the plasma concentra- 
tion of 0.3 pmol/kg (equivalent to 4.6 pg/dL) achieved in rats 
with the higher dose of HPL was adjudged "many-fold greater 
than plausible HPL blood levels in humans." The estimation 
overlooked published data from Semmelweiss Medical 
University, which reported a whole-blood range for HPL of 4 to 
10 pg/dL in schizophrenics." Cutler's higher dose of HPL mar- 
ginally achieved this range. 

HPL definitely is porphyrinogenic in animals. Cutler's lower 
dose of HPL significantly increased total urinary porphyrin 
excretion in rats.528588 Graham documented peak urinary HPL 
immediately prior to a severe attack of acute intermittent por- 
phyria (AIP),39 but alteration of porphyrin metabolism by HPL 
has not been proven in humans. Nevertheless, elevation of HPL 
in the porphyrias is well documented.Z23z8993 In AIP, HPL is ele- 
vated c o n ~ i s t e n t l y ~ ~ , ~ ~  and during AIP neurovisceral crisis may 
reach urinary concentration as high as 946 ~ g / d L . ~ ~  In AIP- 
including the latent state-HPL consistently associates with uri- 
nary PBG and ALA.5293 

The association of HPL with ALA is not limited to AIP. In a 
mixed group of psychiatric patients (N=128), urinary HPL and 
ALA correlated po~it ively.~~ ALA is a potent oxidant and neuro- 
toxing5 with known effects on neuronal energy productiong6 and 
neuro t ransmi~s ion .~~~~ ALA binds P5P and produces free radicals 
by au tooxida t i~n .~~  Animal studies that failed to increase ALA 
after injection with HPLa8 used the Cutler doses. 

Ex vivo, guinea-pig ileal contractions were inhibited by HPL at 
seemingly high concentrations of 8.5 pmol/kg (132 pg/dL),lW but 
HPL in human bowel or stool has not been quantfiedfor reference. 

HPL DEPRESSES HEME 
Heme is tightly coupled to neuronal metabolic activity.lol 

Depression of heme leads to metabolic crisis, with mitochondrialm2 
and neuronallo3 decay. Injection of rats with Cutler's lower dose 
(0.65 pmol/kg) of HPL at 0 and 24 hours reduced hepatic 
microsomal heme (by 42%) and heme-containing cytochrome 
P-450 (by 55%) at 48 hours.88 Equivalent reduction of heme in cul- 
tured neurons with N-methylprotoporphyrin IX (NMP) reduces 
mitochondria1 complex IV, upregulates nitric oxide synthase 
(NOS), and reduces intracellular zinc by half.lol NMP inhibits 
heme synthesis, the proposed mechanism for HPL.SZ,88 It is possible 
that HPL directly binds heme, as does KPL in vitro.IQ4 
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Non-erythroid heme in high-Mauve subjects has not been 
measured, but depressed levels are predictable. Besides potential 
depression by HPL, deficiencies of zinc, B6, and biotin (all cofac- 
tors for heme synthesis) independently decrease non-erythroid 

And heme is degraded by stress.'" It should be men- 
tioned as well that heavy metals, which have not been examined 
in relation to Mauve, are renowned dysregulators of porphyrin 
metabolism and increase heme degradation.'" 

Heme plays a central role in energy production and is 
required by a family of biomolecules needed for detoxification 
and antioxidant defense: catalase, cystathionine synthase, cyto- 
chrome, guanylate cyclase, heme-hemopexin (for production of 
metallothionein), NOS, pyrrolase, sulfite reductase. Ultimately, 
heme depression increases oxidant leak from mitochondria and 
oxidative damage to cells.99 lo2 

HPL AND OXIDATIVE STRESS 
Oxidative stress clearly results from deficiency of zinc or B6, 

as reviewed by McGinnis.Io5 For example, even marginal B6 defi- 
ciency is associated with lower glutathione peroxidase (GSHPx), 
lower glutathione (GSH) reductase, lower reduced/oxidized glu- 
tathione ratios, higher lipid peroxide levels, and mitochondria1 
d e ~ a y . ' ~ ~ . ' ~ ~  The B6 vitamers are themselves highly vulnerable to 
damage by oxidative s p e c i e ~ . l ~ ~ - ~  P5P protects neurons from oxi- 
dative stress, apparently by increasing energy production and 
lowering excitoto~icity,"~.~~ and zinc supplementation decreases 
oxidized b iomole~ules .~~~ lL5 Since HPL is a marker for B6 and zinc 
deficiency, HPL is a potential biomarker for oxidative stress. 

Biomarkers for oxidative stress are known to be higher in 
high-Mauve disorders such as schizophrenia,116117 a u t i ~ m , ~ ' " - ' ~ ~  
ADHD,121 lZ2 Down syndrome,123125 and In schizo- 
phrenia, lower blood levels of glutathione and response to intra- 
venous glutathione were reported nearly 50 years ago.lZ9 

Plasma levels of reduced GSH, the ubiquitous intracellular 
antioxidant, are decreased in diseases associated with greater 
oxidative stress,130 including Down syndrome.131 In Alzheimer's 
disease, in which oxidative modification of brain precedes 
appearance of neurofibrillary tangles and plasma 
GSH correlates inversely with brain levels of oxidatively-modified 
biomolecules.134 It is reasonable to view plasma GSH as a bio- 
marker for pathological effects of oxidative stress. 

Initial data from a small cohort of Austrian patients with 
mixed diagnoses suggested an association between urinary HPL 
and plasma GSH. Peter Lauda, MD, reported that single-void 
colorimetric HPL, adjusted to creatinine, correlated modestly 
with red-cell GSH (r=-0.41) in a group of patients in whom HPL 
was elevated only in 1 of 13  subjects (written communication, 
2005). In samples from the Vitamin Diagnostics Laboratory, 
24-hour urinary HPL (HPLC/MS, normalized to SG) from a 
mixed cohort strongly correlated with plasma GSH (N=30; 
r=-0.85; P1.0001), and abnormal HPL associated with below- 
normal plasma GSH in 17 of 17 subjects (Figure 8). Very strong 
correlation with plasma GSH substantiates urinary HPL as bio- 
marker for oxidative stress. 
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FIGURE 8 HPL and Plasma-reduced Glutathione 

Urinary HPL by high-pressure liquid chromatography/mass spectroscopy in 
24-hour urine correlates with plasma GSH in mixed cohort. Normal values: 
urinary HPL <25 pg/dl; plasma GSH >3.8 pmol/L. N=30; r=-0.88; P<.0001. 

HPL AND CATALASE 
Catalase is an endogenous antioxidant that prevents excess 

cellular hydrogen peroxide (H20z), a freely-diffusible and potent 
oxidant. Catalase consists of 4 protein subunits, each requiring a 
heme group. Since catalase requires heme and HPL suppresses 
heme, it follows that HPL may associate with lower catalase. Lower 
catalase in blood is reported in sch iz~phren ia~"~~ and autism.'36 

In samples collected at the Vitamin Diagnostics Laboratory, 
red-cell catalase activity in a mixed cohort was found to correlate 
inversely with 24-hour urinary HPL by HPLC/MS, normalized to 
SG (N=30; r=-0.92, P<.0001). Abnormal HPL corresponded to 
subnormal catalase in 15 of 17 subjects (Figure 9). In addition to 
proposed direct effects of HPL on heme synthesis, depression of 
catalase may result from greater oxidative stress in high-Mauve 
subjects, because catalase is sensitive to oxidative degradat i~n '~~ 
(as is GSHPX,'~~ which also can remove H202 in a reaction using 
GSH as s~bs t ra te ) . '~~  

Depressed catalase hypothetically predisposes high-Mauve 
subjects to excess H202 and presents a possible explanation for 
hypopigmentation of skin associated with Mauve-including, in 
the extreme, classic "china-doll" complexion.'011 The pathogene- 
sis of vitiligo illuminates the effect of abnormal catalase and 
H202 on pigmentation. A genetic polymorphism for catalase 
apparently predisposes patients to vitiligo.140 All patients with 
vitiligo exhibit decreased catalase and increased H202 in epider- 
mis.14' In the presence of excess H202, melanocytesM2 and mela- 
nin (which normally funct~ons to bind redox-active metals and 
thereby reduce oxidative stress) are damaged, resulting in lesser 
pigment p rodu~t ion . '~~I f  destruction of melanocytes by excess 
H202 is not complete, treatment with pseudo-catalase restores 
skin pigmentation by reducing H202.143144 
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FIGURE 9 HPL and Red-cell Catalase 

HPL by high-pressure liquid chromatography/mass spectroscopy in 24-hour 
urine correlates with red-cell catalase in mixed cohort. Normal values: HPL 
< 25 pg/dL; red-cell catalase >I30 units/min/mg of hemoglobin. N=30, 
r=-0.92; P<.0001. 

As stress classically associates with Mauve, so do stressful life 
events associate with the onset of v i t i l i g ~ . ' " ~ ~  Catecholamines, 
which increase as a consequence of stress, are increased in vitiligo 
patients, particularly during the active pha~e ."~  Both the synthesis 
of catecholamines and their auto-oxidation produce H202.139Y8 149 

Catecholamine excess is cytotoxic in diverse tissues, and the 
toxicity is oxidatively mediated by H202. Excess is implicated 
clearly in human heart disease, and cardiomyocyte apoptosis 
produced by catecholamine infusion is prevented by antioxidant 
vitamins.'50 In cultured neurons, toxicity of epinephrine and nor- 
epinephrine is reproduced by addition of equimolar H202 or 
blocked completely by addition of catalase.15' Catecholamine 
excess in neurobehavior was anticipated by Abram Hoffer in the 
Adrenochrome Hypothesis of Schizophrenia in 1954.152153 

Besides lighter skin, lighter hair coloration than siblings 
and earlier gray is reported in high-Mauve subjects. Excess H202 
is known to increase proportions of oxymelanin in hair, with 
lightening analogous to the effect achieved by topical application 
of bleach for cosmetic p u ~ p o s e s . ' ~ ~  Excess H202 remains hypo- 
thetical until levels are measured in the high-Mauve population. 
Zinc deficiency alone may explain hypopigmentation associated 
with Mauve. Melanin is rich in zinc and requires zinc for synthe- 
sis and maintenance.150155 Zinc protects melanocytes from oxida- 
tion,lS4 lS6 and zinc-deficiency grays the coats of rats.IS7 Oxidants, 
including H202,158 displace zinc from binding proteins, and it 
has been suggested that clinical zinc depletion results inherently 
from greater oxidative s t res~."~ 

HPL AND NITRIC OXIDE 
Heme depression results in excess nitric oxide (NO),lol 

which is injurious to the and is suspected to play a role 
in such high-Mauve disorders as schizophrenia,16' autism,'" a n d  
Down syndrome.'63 In schizophrenia and autism, stable metabo- 
lites of NO are elevated in conjunction with greater thiobarbitu- 
ric acid-reactive substances in ~ 1 a s m a . l ~ ~  

In samples from a mixed cohort at Vitamin Diagnostics 
Laboratory, plasma NO, measured directly, and 24-hour urinary 
HPL by HPLC/MS, normalized to SG, correlated positively (N=30; 
r=0.60; P<.0001). The statistical relationship strengthens substan- 
tially (r=0.96) if an extreme outlier is excluded on the presumption 
of poor sample preservation (Figure 10). The strong association 
with NO enhances Mauve as a biomarker for oxidative stress. 
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FIGURE 10 HPL and Plasma Nitric Oxide 

HPL by mass spectroscopy/high-pressure liquid chromatography in 
24-hour urine correlates with plasma nitric oxide in mixed cohort. 
Normal values: HPL<25 pg/dL; plasma nitric oxide 18-36 pmol/L. N=30; 
r=0.60; with exclusion of an extreme outlier (6.4, 186), r=0.97, P<.0001. 

It should be noted that while altered functional B6, zinc, 
biotin, GSH, catalase, and NO all point toward increased oxida- 
tive stress in association with urinary HPL, the data presented 
are from non-congruent cohorts. Proof that these parameters 
move together would require same-subject measurement of each. 
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